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Properties of Clebsch-Gordan coefficients and 3-j symbols 
for the quantum superalgebra U,(~sp(ll2)) 

Pierre Minnaert and Marek Monzymast 
Laboratoire de Physique Theoriquef, Universite Bordeaux I, 19 rue du Solarium, 
33175 Gtadignan Cedex, France 

Received 22 July 1994, in final form 6 December 1994 

Abstract This paper is a continuation of the study begun in an earlier papa of the svucture 
of grade-star representations of the quantum superalgebra Uq(osp(l 12)). The general w e  of lhe 
tensor product of two grade-star representations acting in representation spaces with arbitrary 
(not necessarily positive definite) Hermitian forms is considered. An explicit analytical formula 
for Clebsch-Gordan coefficienk for this general ose is derived using the projection operator 
method. Pseudo-orthogonality relations are given and symmetry properties, including Regge 
symmetry. are discussed. The quantum analogues of super 3-j  symbols a~ defined and lheir 
symmetry properties a~ analysed. 

1. Introduction 

Recently, quantum algebras [l] have provoked considerable interest among theoretical 
physicists. This wide interest may be explained by the fact that quantum algebras 
are continuous deformations of well known Lie algebras and that their representation 
theory is very similar to that of non-deformed Lie algebras. In particular, the Hermitian 
representations of the quantum algebra Uq(su(2)) have the same structure as those of 
the su(2) algebra. It has been shown in several papers [2-5]. that for the Hermitian 
representations of quantum algebra (Iq(su(2)), the Racah-Wigner calculus can be fully 
developed following the same lines as in the classical case. It is quite remarhble that all 
topics that are relevant for the classical Racah-Wigner calculus have their direct quantum 
analogue in the representation theory of the quantum algebra Uq(su(2)), 

A very efficient method for the analysis of the properties of irreducible representations 
is the projection operator method, first inlroduced to derive the su(2) Clebsch-Gordan 
coefficients (CGC) by Shapiro [61. Recently, Smirnov, Tolstoy and Kharitonov [7,8] have 
used the projection operator method to derive an analytical formula for the CGC of the 
quantum algebra U,(su(Z)) and to study the corresponding Racah-Wigner calculus. 

The superalgebra osp(ll2) was first introduced by Pais and Rittenberg [9]. In [lo], 
Scheunert, Nahm and Rittenberg introduced the concept of grade-star representations which 
are generalizations of Hermitian representations of simple Lie algebras. In the case of 
the superalgebra osp(ll2) the grade-star operation is a generalization of the classical star 
operation in the sense that when it is restricted to the even part sl(2) of osp(ll2), it becomes 
a classical star operation (which is associated with the real form of su(2)). Because real 
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forms of osp(ll2) do not contain the Lie algebra su(2) as their even part [ 1 I], the grade-star 
operation is not associated with any real form of osp(ll2). but it allows one to construct 
superanalogues of the Hermitian representations. The structure of grade-star representations 
of osp(ll2) is very similar to the structure of Hermitian representations of su(2). In 
particular, even generators of osp(ll2) are represented in the same way as in Hermitian 
representations of su(2). The tensor product of two irreducible grade-star representations is 
simply reducible and using the inclusion sl(2) c osp(ll2), Scheunert, Nahm and Rittenberg 
[12] and Berezin and Tolstoy [ 131 showed that any osp(l12) Clebsch-Gordan coefficient can 
be factorized into the product of a usual su(2) Clebsch-Gordan coefficient and a so-called 
scalar factor. In [I4161 (see also references therein), it has been shown that the Racab- 
Wigner calculus can also be constructed for this superalgebra. In particular, the super s3- j 
and super s6- j symbols have been defined and expressed in terms of the classical 3- j and 
6- j symbols. 

The quantum superalgebra Uq(osp(l12)), which is the subject of this paper, is 
the quantum analogue of the osp(ll2) superalgebra. The gradestar representations of 
U,(osp(ll2)) are superanalogues of Hermitian representations of the U,(su(Z)) quantum 
algebra. It should be noted that there is no inclusion Uq(sI(2)) g U,osp(llZ)). This 
quantum superalgebra has been defined and studied by Kulish and Reshetikhin [17, IS]. Its 
Clebsch-Gordan coefficients were derived by Kulish [19], using a recursion relation, and 
in [201 using the projection operator method. A particular case of CGC was also given by 
Saleur [Z 11. 

In [20], it was shown that in the reduction of the tensor product of two irreducible 
representation spaces of U,(osp( 112)) with positive definite bilinear Hermitian forms, 
representation spaces appear, the Hermitian forms of which are not positive definite and 
where the highest-weight vector is normalized to -1. In this paper, in order to study the 
most general case, we consider the reduction of the tensor product of representation spaces 
whose bilinear Hermitian fonns are not necessarily positive definite, and using the projection 
operator method, we derive an analytical formula for the Clebsch-Gordan coefficients. This 
analytical formula does not differ from the analytical formula obtained in [20], which 
proves that the Clebsch-Gordan coefficients do not depend on the signatures of the bilinear 
Hermitian forms defined in the representation spaces. In addition, we study several 
properties of Clebsch-Gordan coefficients: orthogonality relations, symmetry properties, 
particular values and also show that Clebsch-Gordan coefficients satisfy a conditional Regge 
symmetry. 

As in the case of U,(su(Z)), the study of the symmetry properties of the Clebsch- 
Gordan coefficients allows one to define sq3-j symbols for U,(osp(ll2)) that possess good 
symmetry properties. We first define sq3-jA symbols which depend on the parities A of 
the graded representation space bases. Then, we show that the dependence on parities can 
be factorized out, so that one can define parity-independent 3 - j  symbols for the quantum 
superalgebra Uq(osp(l12)) that are superanalogues of the 3 - j  symbols for the quantum 
algebra Uq(su(2)) and that have symmetry properties very similar to those of these 3 - j  
symbols [7,8]. 

This paper has the following structure. Section 2 contains the definition of the quantum 
superalgebra Uq(osp(l12)) and the basic properties of its irreducible representations, and 
we recall the explicit expression of the projection operator for the quantum superalgebra 
U,(osp(l12)). In section 3, we consider the tensor product of two irreducible representations 
of Uq(osp(l12)) with arbitrary Hermitian forms and the projection operator is used to 
derive an analytical formula for the Clebsch-Gordan coefficients. Pseudo-orthogonality 
relations, recursion relations and symmetry properties of the Clebsch-Gordan coefficients 
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are given in the following subsections of section 3. Section 4 is devoted to 3 - j  symbols: 
parity-dependent and parity-independent 3- j  symbols for Uq(osp(l12)) are defined and their 
properties are discussed. 

2. The irreducible representations of the quantum superalgebra Uq(0sp(l12)) 

2.1. Representation spaces 

The quantum superalgebra Uq(osp(l12)) is generated by three elements: H (even) and U* 
(odd) with the following (anti)commutation relations 

where the deformation parameter 4 is real and is related to the q-deformation parameter by 
q = e-$. The following expressions for coproduct A, antipode S and counit c define on 
Uq(osp(l12)) the structure of a Hopf algebra 

A(Q = v i  @ q x  + q - x  0 U+ 

A ( H ) = H @ l + l @ H  A ( 1 ) = 1 @ 1  (2.3) 

S ( H )  = -H S(v*) = -q*ilJi (2.4) 

(2.2) 

E(H)  =€(U*) = 0 €(1) = 1. (2.5) 
For the homogenous elements of Uq(osp(l12)), one can define a parity function deg such 
that 

deg(H) = 0 deg(v*) = 1 deg(1) = O .  (2.6) 
A finite-dimensional representation space V of U,(osp(l[Z)) is a graded vector space 
V = V(0) 8 V(1) where V(0) is an even subspace and V(l) is an odd subspace. We 
assume that there exists in V a bilinear Hermitian form ( , ), not necessarily positive 
definite, such that 

(V(0). V(1)) = 0. (2.7) 
A representation of the quantum superalgebra Uq(osp(l12)) in the finite-dimensional graded 
space V is a homomorphism T 

(2.8) 
of the associative graded algebra Uq(osp(l12)) in the associative graded algebra of linear 
operators in V, L ( V ,  V ) ,  such that 

T : U,(osp(llZ)) + L(V, V) 

From the (anti)commutation relations (Z.l), one can derive the following fundamental 
formula: 

[m]![n]! 
[ i ] ! [ m  - i]![n - i]! 

min(m.n) 

(T(u+))"(T(v-))" = (-1)m" ( - 1 P  
i=O 

(2.10) 
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where 
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N!,) 
sh(2r7) 

y = -  (2.11) 

and [n] is the Kulish symbol defined as follows [19] 

We have set q = e-: therefore, the symbol [n] is positive if q > 0. Note that the limit q + 1 
depends on the parity of the argument n of the symbol. Scheunert, Nahm and Rittenberg 
[ 101 have introduced the concept of grade-star representations. In such a representation the 
operators satisfy the following relations: 

T ( H Y  = T ( H )  T(u# = &(-1yT(1+) T(1)' = T(1) (2.13) 

where (*) is the grade adjoint operation defined in the following way 

( T ( X ) ' f , g )  = (--l)d-("&qf, T ( X ) g )  (2.14) 
for any X E U,(osp(ll2)) and f, g E V. The index 6 = 0.1 defines the class of the 
representation. 

For more details on gradestar representations see [ 12,13,16,20]. 

2.2. Finite-dimensional irreducible representations 

Let U' be a finite-dimensional rapresentation space with highest-weight 1 (I is a non-negative 
integer). The highest-weigh! vector is denoted by e: and is defined by the following 
properties: 

I 
T (H) (e : )  = $ T(u+)(ej) = o (2.15) 

(e:, ef) = (-I)* with II, = 0,1. (2.16) 
The last condition is motivated by the fact that, for a tensor product of two irreducible 
representations of Uq(osp(l[2)) with positive definite bilinear Hermitian forms, in the 
Clebsch-Gordan series representation spaces appear whose Hermitian forms are not positive 
definite and where the highest-weight vector is normalized to -1 [20]. Therefore, in order 
to study the general case, we consider representation spaces where the condition (2.16) 
holds. 

From the relations (2.15), it follows that e' belongs either to V'(0) or to V'(l), i.e. it 
has a definite parity. Therefore, we set ef = d ( A )  and V' V'(h), where A = 0, l  is the 
parity of the highest-weight vector in the graded representation space. 

Thus, any grade-star representation of Uq(osp(l12)) is characterized by four parameters: 
the superspin 1 (a non-negative integer), the parity A = 0, 1, the normalization parameter 
II, = 0,1 and the class 6 = 0 , l  of the representation. 

One can construct in the usual way an orthogonal basis &(A) in V'(h)  where 
m = 1 . 1  - 1,. . . - I  + 1, - I ,  so that the representation space V(A) is (21 + 1)-dimensional. 

The veztors .??(A) are orthogonal and normalized to k l ;  more precisely we have 

(e;@), e:,@)) = (-1)6"('-m)tp6mm, (2.17) 
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where 
p = h + E + 1 mod(2) (2.18) 

In the particular case 

+ = O  p = O  o A = e + l  mod(2) (2.19) 
the basis vectors &(A) are normalized to + I ,  which means that the Hermitian form (, ) is 
positive definite. This case was considered in 1201. In the following, we shall consider the 
general case where Q and p are not fixed. 

The operators T(u*) and T ( H )  act on the basis Jz(A) in the following way: 
m 
2 

T(H)e?(A) = - e?(i)  (2.20) 

(2.21) 

T(u-)e:(A) = JO + m l [ l -  m + 11y &(A). (2.22) 
This action of the operators T(u*) and T(H) does not depend on the parameters A. E ,  @. 

The gradestar representation T, characterized by the class E and acting in the 
representation space V'(h) whose Hermitian form signature is determined by p and @ 
is denoted by T$, (the index A is fixed by relation (2.18)). However, in the following, the 
indices 6. p, @ will often be omitted in the notation. 

In the limit q --t 1, we obtain a basis for the superalgebra osp(l(2)  representation space, 
cf [20] 

(2.23) lim e? (A) = ef, (A) . 
9+1 

2.3. The projection operetor P for the quantum superalgebra U9(osp(l/2)) 

In this subsection, we recalI the definition and some properties of the projection operator 
for the quantum superalgebra U9(osp(l12)). This operator P9 acts linearly in the space V, 
the direct sum of all representation spaces V'. It is defined by the following requirements: 
[ T ( H ) ,  P ~ I  = o T ( u + ) P ~  = o (P')* = ~9 P ~ + ( A )  = eP(A).  ( 2 . ~ 4 )  
It has been shown in [20], that the operator P9 can be written in the form of a series 

a, 

pq = Cc,(T(H))(T(u-)Y(T(u+))' (2.25) 
,=O 

(2.26) 

General formulae for the projection operator of quantum orthosymplectic superalgebras 
have been derived by Koroshkin and Tolstoy [22]. In the limit q + 1, this coefficient and 
therefore the projection operator are equal to the corresponding osp(ll2) coefficient and 
projection operator P, cf [13], 

lim P9 = P .  (2.27) 
9+ I 

Let us consider the space W, of all vectors of weight m, i.e. W, = { f IT(H) f = $f). 
The restriction of Pq to this space is denoted by Pm9 and it has the form 

(2.28) 
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where the coefficients c,(m) are now numbers 
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(2.29) 

In what follows, we will use the so-called shift operators PA:, acting in Vl. For l > m and 
1 > n they are defined by the expression 

x(T(u-))'-" P'9 (T(lJ+))l-". 

F O ~  properties of the shift operators PA; see ~201. 
(2.30) 

3. The Clebsch-Gordan coefficients for the quantum superalgebra V,(osp( 112)) 

3.1. Tensor product of WO irreducible representations 

Let V'I(A.1) and V'2(h2) be the representation spaces of two representations Tk;;, and TZ** 
of the same class E .  From (2.18), this implies that the parities Ai and signatures 91 (i = 1,2) 
are related by 

The bilinear Hermitian form in the tensor product space V'I(h1) @ V'>(Az) is defined by 

where XI, YI E V'l(hl), X?, YZ E V"(Az). It should be stressed that even if both Hermitian 
forms in the representation spaces V ' l ( h ~ )  and VLt(hz) are positive definite, the form (3.2) 
is not necessarily positive definite. 

The space V r L ( i l )  @ V"(hz) with basis vectors e?@]) @ e;f(Az) is a representation 
space for the tensor product of representations Ti;;, @ Tk, and the action of the generators 
u* and H in this space is represented by the following operators: 

(3.3) 

A I  + VI = hz + (4 mod(2). (3.1) 

((Xl @ X,), (Yl @ Yz)) = (-l)dcp(X')dcg(Y')(Xl, Y l ) ( X 2 ,  YZ) (3.2) 

~ 2 ( 1 , 2 ) = ( T "  @T")A(u*)= T " ( u + ) @ q  T ' W )  + q-T"(H) @ Th(,*) 

H@(1,2)= (T'l @TI2)A(H) = T ' ~ ( H ) @ T ' ' ( i ) " ' ' ( i ) @ T h ( H ) .  (3.4) 

(&l, 2))' = ( T q u * ) y  @ q'T"'""' + q - @ ' ( H ) Y  @ (TIyu*))* (3.5) 

(3.6) 
i.e. the grade adjoint operation does not change the order in the coproduct. With this 
definition, the tensor product of the representations Ti;$, @ TZ*> is a representation of the 
class 6 with respect to the Hermitian form (3.2). 

It has been shown in [20] that the tensor product of the representation spaces 
V'l(Al) @ VIZ(A2) can be reduced to a direct sum of the subspaces V'(A) 

(3.7) 

(3.8) 
In this reduction, each subspace appears only once, i.e. the tensor product of two 
representations of the same class is simply reducible. 

The grade adjoints of operators @ ( I ,  2) and P ( 1 . 2 )  are defined by 

(H@(l, 2))' = (T'I(H)Y @ Tqiy + Tll(iy @ (Th(H))' 

V''(A1) @ V"(J.2) = &V'(A) 

Ill - 121 < I < 11 + 1 2 .  

where 1 is an integer satisfying the conditions 
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3.2. Uq( ( i /2 ) )  Clebsch-Gordan coefficients 

By definition, the Clebsch-Gordan coefficients (Ilmlht. Izmzhzllmh), relate the pseudo- 
normalized basis &:(AI) 8 &:(Az) and the reduced pseudo-normalized basis &'(Il, I 2 , X )  
in the following way: 

ez(I i ,  12, A) = ( I lmlh ,  IzmzhzIImA), ei:(Al) 8 eiY(h2) (3.9) 
m l m  

where ml + m2 = m. From the definition (3.2) of the bilinear form in Vf I (h l )  0 Vf2(A2) it 
follows that: 

(Ilm1 Al. I2mzAzllmA) - (- l)(fl-~l+A1)(f~-mz+A1) (- l ) ( ~ ? = = I  so,(I;-mi)+h) 
9 -  

x ( e ~ : ( l l ) 8 e ~ ( h z ) , e ~ ( l l , I z , A ) ) .  (3.10) 

The vector ef2(11,1zr X) is represented without loss of generality [20] in the form 

(3.13) 

where 

rp = II + 12 + 1 + AI + 
+ = (11 + 12 + I + A d A l  + rpz(l~ + IZ + I )  + +I + +2 

mod(2) (3.14) 

(3.15) 

Thus, the basis e?(Il, 12, A) is orthogonal but not positive definite. Its signature is the same 
as in the classical osp(ll2) case [16]. If we set pi = +i = 0, i = 1,2, we obtain the same 
formula as in [ZO]. 

From the relation (3.1 l), it follows immediately that the parity A of the reduced basis 
.&(I], 12, A) can be expressed as 

mod(2). 

A = 11 +lz+ E + Al  + 1 2  mod(2). (3.16) 

Using the properties of the projection operators, and after laborious calculation, we get 
the following analytical expression for the Clebsch-Gordan coefficients of the quantum 



[12 + 11 - m - z]![212 - z]! 
X (3.17) [zl![h t 12 - I - zl!R + iz + I + 1 - 21![12 - m2 - rl!  

where the summation index z runs over all possible values such that the arguments of 
the symbol [nl are non-negative. The Clebsch-Gordan coefficients do not depend on 
the parameters vi, $ i ,  ( i  = 1,2) and E, i.e. ffic do not depend on the signature of the 
representation spaces. Exactly the same formula has been obtained in [20] where the 
particular case 'pi = @i = 0 (i = 1,Z) was considered. 

It is quite noticeable that this formula differs from the corresponding formula for 
Uq(sI(2)) Clebsch-Gordan coefficients only by the phase factor and by the definition of 
the symbol [n]. 

Using methods similar to those described in [7], one can show that for the particular 
case m = 1 the ClebscbCordan coefficients take the form 

( h m l h ,  hm2h211Wq 

= ( - ~ ) A i ( l - h - m d  ( - i ) ( l , - m , ) ( f ~ - m ~ ) + ~ ~ , - ~ , ) ( f ~ - m , ~ l )  

. q t ( r l + l , - r ) ( ~ + f ~ - ~ , + ~ )  9 - f ( r , - d c f + i )  

[U+1l![h+m~l![l1 +m~l![h +h-II! y .  
x ([[I - mll![Iz - mzl![lz - + 11![11- l2 + 11![l1+ 12 + 1 + I]! 

(3.18) 

This formula has also been derived using a recursion relation in [19]. 
The analytical values of the simplest Clebsch-Gordan coefficients (lt ml, 1 mZJIm), are 

given in [ZO]. 
Note that 

(I i l ihi ,  ~ z f z A z 1 1 i + l z 1 1 + h A 1 + h z ) ~ = 1  (3.19) 

and that the Clebsch-Gordan coefficients ([I 11 11, l ~ m z h z l f  Ih),  are always positive. 
Therefore these ClebschGordan coefficients satisfy the classical Condon-Shortley 
convention. 

Finally note that the limit of the U,(osp(ll2)) Clebsch-Gordan coefficients is the 
osp(ll2) Clebsch-Gordan coefficients in the basis e;@). [ZO] 

lim (ZimtA~, hm212llmh), = (11mlJ.1, l2m2AzIlmW. 
q-1 

(3.20) 
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3.3. Properties of the Clebsch-Gordan coeficients 

From equations (3.2) and (3.13), it follows that the Clebsch-Gordan coefficients satisfy the 
following pseudo-orthogonality relations: 

(- 1)('1-mj)(ft-m2)(l,m ,AI, hmlizllmh)r (11  m i l l ,  1zm2h211'm'b)q 
mimr 

= (-l)(i-m)L&i,8mm, (3.21) 

~( - l ) ( ' - ' " ) ' ( l lmlh l ,  12m212llmA), (Zlm;hi, Izm;hzllmh), 
im 

- - ( -1 ) ( i~ -m) (kmd~  mrm;&" (3.22) 

where L = I1  + 12 + 1. Thus actually, the pseudo-orthogonality relations do not depend on 
the parameters pi, et, hi and 6. 

Considering the action of operators @ ( l ,  2) on the defining relations for Clebsch- 
Gordan coefficients, one can derive the following recursion relations: 

J[f + m l P  - m + lIy(11mth1, lzmzhzllm - 1 A)p 

Such recursion relations were used in [191 to derive an analytical formula for Clebsch- 
Gordan coefficients equivalent to (3.18). 

In the theory of the classical Racah-Wigner calculus, a very important role is played 
by the Clebsch-Gordan coefficient ( jm, jn[00)  which defines an invariant metric in 
the representation space. In the case of the quantum superalgebra U,(osp(ll2), the 
corresponding coefficient has the form 

1 &"(A) (Ink,  [n,I.1Wo), = (-I)(*)"-"') (-l)f(f-m)(i-m-l) 9 ? (3.25) 

It also defines an invariant metric and satifies the properties: 

C$n(h)C$-'(h) = A (3.26) 

This invariant metric will be used to construct the symmetric 3-j  symbols for the quantum 
superalgebra U,(osp(l12)). One can easily check that in the l i t  q = 1,  the invariant 
metric becomes the invariant metric for the classical superalgebra osp(ll2) [16]. 

121 + 11 . C2n(h) = (-l)mC,$(A) 
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3.4. Symmetries of the Clebsch-Gordan coejyicients 

Using techniques similar to those described in [7], or using the recursion relations (3.23), 
(3.24), one can prove that the Clebsch-Gordan coefficients possess the following symmetry 
properties: 

(11 ml hi ,  l z m z  h 1 1 3  m3 A d 9  

P Minnaert and M Mozrzymas 

- - ( - l ) ( l , - m l + A ~ ) ( l ~ - m ~ + A ~ )  (- l ) ( A ~ + A * ) ( l ~ t f ~ + l , ) + A ~ A ~  ~ ~ ~ ~ ~ ~ l ~ t l ~ - i ~ ~ ~ i ~ + l ~ - l ~ t l ~  

x(Izmzh2F 11 (3.27) 

(11 ml hi, lz mz AzIhm3 A d q  

- - (_ l ) f ( fztmr)(htmz- l )  (-1).b(f1th-m) 

(3.29) 
The Clebsch-Gordan coefficients also satisfy the 'mirror' symmetry 

( 1 1  mi h l ,  hmzAzlhm3Adq 

- - (- 1)LL 4 ( l , -m, ) ( r%-w- I )  (11 -ml A I ,  11 - mzhzlb - m3 Ad9- (  (3.30) 

where L = 11 + 12 +la .  All these symmehies have the same structure as the symmetries of 
Clebsch-Gordan coefficients for quantum algebra V,,(su(2)) [7], except that the phases are 
nonlinear in li , mi and that they depend on the parities A;, (i = 1,2,3). 

Another similarity between both cases is the existence of Regge symmetry. However, 
in the case of the quantum superalgebra Uq(osp(l12)), Regge symmetry is realized only 
under certain conditions. Assume that in the analytical formula (3.18) for Clebsch-Gordan 
coefficients the condition 

it +12+m1+m2=0 mod(2) (3.31) 

is satisfied, and consider the following linear transformation on the arguments: 

I ;  = f ( h + / z + m l + m z )  m ; = j ( l l - I z + m l - m z )  (3.32) 

14 = $1 + 12 - ml - m2) (3.33) 

1; = 13 mi = 11 - 12. (3.34) 

m; = $1 - 12 - ml + mz) 

The superspins Z;, i = 1 , 2 , 3  satisfy the relation (3.8). the projections mi satisfy mi +mi = 
mi and the condition (3.33) guarantees that Lf  are integers. Thus, the transformation 
(3.34H3.36) is an admissible transformation on the superspins 11 and projections mi in 
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the tensor product V'l(A1) 8 Vh(Az). If we now substitute in the analytical formula (3.18) 
the values of 1; and mi, then the phase is invariant and all expressions in symbols [n ]  either 
remain invariant or are exchanged painvise so that the expression (3.18) remains unchanged. 
Therefore, the U9(osp(112)) CGC satisfy Regge symmelry: 

( l j m i h ,  ~&;A2J1~m;W9 = ( h m t h ,  lzm~W3m3.\3), . (3.35) 

Let us observe that the numerical value of the right-hand side of expression (3.18) is invariant 
under the transformation (3.32)-(3.33) even if the condition (3.31) is not satisfied. But in 
this case, the transformation introduces superspins that are half-odd-integers which do not 
correspond to irreducible representations of Uq(osp(l 12)). Thus, the analytical formula 
(3.18), obtained by application of the projection operator method, exhibits in a natural way 
the Regge symmetry of the coefficients. 

4. Symmetric 3-j symbols for quantum superalgebra Uq(osp(llZ)) 

4.1. The paripdependent sq3-jA symbols 

In analogy with the classical case of the su(2) algebra, one can define sq3-jh symbols for 
the quantum superalgebra U9(osp(112)) that possess good symmetry properties 

( lihi W-z 13A3 ) 
mi mz m3 

= (- 1 ) L h  (- 1 ) i ( h + m O ( J ~ + m ~  - 1 )  (- 1) $( l*-md(h-mz- l )  (- 1) f ( h + m N , + m r - l )  

x q  f m l - j ( m i - m d c h q  , ; , , ( M l t m t h  L"llsm;A3), (4.1) 

where C$f.,(h) is the invariant metric defined by relation (3.28). Using the explicit form 
of the invariant metric, the definition of the symbol sq3-jh may be written 

( lihi l z h  13h3 ) 
mt mz m3 

- - ( - l ) ( h + k m d h  ( - l ) ~ ( ~ , + m , ) ( ~ , + m ~ - t )  ( - l ) i ( f ~ - m ~ ) ( f ~ - m ~ - ~ )  

(4.2) 

The symbols sq3-jh satisfy the same constraints as Clebsch-Gordan coefficients, namely 

Ill - (21 < b < 11 f l 2  (4.3) 

m l + m ~ + m s = O  (4.4) 

11 + 12 + 13 = h3 + A I  + AZ mod(2) . (4.5) 

Taking into account the symmetry properties of Clebsch-Gordan coefficients, one can show 
that sq3-jA symbols are invariant under even permutations of columns 

) m2 m3 ml . (4.6) l z h  13h3 Zihi 
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Under an odd permutation of columns and the simultaneous change q + q - l ,  they are 
multiplied by a phase factor ,6 

P Minnaert and M Mozrzymas 

I i l i  lzA2 13h3 ) ( 1;; h A i  1313 

ml m2 m3 

where the phase is 
B = (-i)E?-, ~(fj-mj-A,)(f;-mj-~;- l )  

Under 'mirror' symmetry, the sq3-jl symbols transform in a slightly different way 
(4.8) 

Finally, if the condition 

I I  + h + m ~  +m2 = 0 mod(2) (4.10) 
is satisfied, then the symbols satisfy Regge symmetry ), - - ( 1111 12 i2  /3h3 ) 

ml mz m3 

where 1;. mi, i = 1,2,3 are now of the form 

(4.1 1) 

1' I - - I 2(h + h + m l + m z )  (4.12) 

1' - - - + 1 2 - m 1  -mz) mi = $ ( I !  - 1 z - m l + m 2 )  (4.13) 

1; = 13 mi = 12 - 11 . (4.14) 
From the definition of the sq3-jl symbols, and from the pseudo-orthogonality relations 
for Clebsch-Gordan coefficients, it follows that these symbols satisfy modified pseudo- 

m' I - - Z ( ~ I  - -h+ml  - m d  

orthogonality relations: 

- - (-l)(fr-m~)(h-md q -1 !( m l-%",m;am2m;. (4.16) 
We also have the following relation between the s q 3 - j l  symbols and the Clebsch-Gordan 
coefficients: 

(4.17) 
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In the limit q + 1, the sq3-jh symbols become the s3 - jh  symbols for the superalgebra 
osp(ll2) defined in [16]. 

The sq3-jA symbols have better symmetry properties than the Clebsch-Gordan 
coefficients, but they still depend on the parities hi, so these symbols are not real analogues 
of the q3- j  symbols for the quantum algebra Uq(su(2)).  It was shown in [16] that in 
the case of the superalgebra osp( l ]2 ) ,  the dependence on Ai can be factored out, so that 
it was possible to define s3-j  symbols that do not depend on parities hi. In the next 
subsection, we will show that such a factorization is also possible in the case of the quantum 
superalgebra Uq(osp(112)), which gives rise to the possibility of defining parity-independent 
sq3- j  symbols. 

4.2. Parity-independent sq3-j symbols 

Parity-independent sq3-j  symbols are defined in the following way: 

- ( - ] ) ~ ~ ( l , - m , ) ( l , + , + ~ j + ~ )  ( 2 12h2 h i 3  ) 
m2 m3 

with the short notation 

(4.18) 

cXiYi+l  =xlyZ+X2Y3fX3YI. (4.19) 

Using the relation (4.2), the sq3- j  symbols may be expressed in terms of Clebsch-Gordan 
coefficients 

cire 

x(11 ml A I ,  12 mzhzlk - m 3 W q  . (4.20) 
The symbols satisfy constraints (4.3) and (4.4). Using the analytical formula for Clebsch- 
Gordan coefficients, one can easily check that the sq3- j  symbols do not depend on the 
parities hi. 

The symmetry properties satisfied by the parity-independent sq3-j  symbols are similar 
to the symmetry properties of sq3-jh symbols: 

(4.21) 

(4.22) 

(4.23) 

Under 'mirror' symmetry, the sq3- j symbols transform in the same way as sq3- j h  symbols 

(4.24) 12 
-mZ -m3 

= (-I$, &mt)(I;-m,-I) 



682 

In addition, there exists a conditional Regge symmetry, but in this case the symbol is not 
invariant, it is changed by a phase factor 
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where I:.  mi, i = 1,2,3 are given by formulae (4.12)-(4.14) and li and m i  satisfy the 
condition (4.10) which guarantees that the phase is real. 

The sq3- j symbols satisfy pseudo-orthogonality relations identical to those of sq3- jA 
symbols equations (4.15)-(4.16). From the parity-independent sq3- j symbol, one can define 
an invariant metric that is independent of A 

It is related to the invariant metric CZn(A) defined by relation (3.29) in the following way: 

(4.27) 
I ,  the sq3-j symbols become s3-j symbols for the superalgebra 

Cmn Iq - - ( -1)(!-m)PtOc'q mn (,I), 

In the limit q --f 

os~(ll2) MI. 

5. Conclusion 

The quantum superalgebra Uq(osp(l12)) can be considered as the quantum analogue 
of osp(l\2) superalgebra. m e  grade-star represetations of the quantum superalgebra 
Uq(osp( 112)) are superanalogues of Hermitian representations of Uq(su(2)) quantum 
algebra. 

In this paper, it has been shown that the irreducible representations of the quantum 
superalgebra Uq(osp(l12)) have the same structure as those of the non-deformed 
superalgebra osp(l12). In particular. Clebsch-Gordan coefficients have been defined such 
that they satisfy the same symmetry properties and pseudo-orthogonality relations as in the 
non-deformed case. Moreover, after factorization of the parity dependence, we have defined 
symmetric sq3-j symbols which are, at the same time, quantum deformations of the s3- j  
symbols for the superalgebra osp(ll2) and supersymmetric analogues of the q3-j symbols 
for the quantum algebra U9(5u(2)). 

In a forthcoming publication, this analysis of the Racah-Wigner calculus for the 
Uq(osp(l12)) quantum superalgebra will be continued with the definition and analysis of 
sq6-j symbols. 
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